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1. INTRODUCTIOi_ANDSUMMARY

The development of fiber-optic systems and of passive optical sensors

appropriate for measurementof conditions in cryogenic liquid propellant

tanks in accordance with requirements of NASA/JSCContract NAS9-15454

entitled "Fiber-Optic Instrumentation" has been completed. The purpose

of this report is to outline the overall program undertaken by TRW,to

document the research, development, and testing performed under this
contract, and to identify recommendationsfor subsequent development

programs.

1.1 BACKGROUNDANDPURPOSEOF STUDY

United States space programs use launch-veI_icle engines requiring

highly explosive propellants. For example, the SpaceShuttle, the current

launch vehicle of the space program, incorporates main engines that are

fueled by liquid oxygen and liquid hydrogen - both of which are extremely
explosive liquids. Every effort is madeto reduce the potential hazards

associated with handling and using these propellants. However, a large
portion of the cost of using hazardous materials such as LOXis reflected

in the necessary safety measuresthat must be implemented. Therefore,

a small improvement in increasing safety results in a large reduction
in cost

In the case of the Space-Shuttle LH2 and LOXtanks, the instrumentation
that performs liquid-level gauging principally consists of point electrical

sensors, which are a proven and commonmethod for gauging tanks. Capaci-

tance gauges are also employed, particularly when a continuous reading is

required. Although from the engineering standpoint point sensors and

capacitance guages can be madeto work well in a LOXor LH2 tank, from
the safety standpoint, both techniques are undesirable because the power

and signal leads to the sensor must penetrate the tank, thus presenting

the possibility cf an electrical anomaly capable of causing an explosion,

When a hazardous condition exists, such as that of point sensors with-

in LOX tanks, the risk has been controlled by very careful quality control

and extensive testing to reduce the possibility of a failure to an

I-I



extremely low number. The result of this special handling and additional

record keeping has been imposition of a significant increase in the overall

cost of inexpensive hardware. Obviously, if current-carrying wires can be

elinlinated from tanks that contain material susceptible to ignition,
then both increased safety and lower costs are realized.

Recent advances in fiber-optic technology are leading to wider

application of such systems, including use in passive optical-sensing

devices. The purpose of present TRWprograms in fiber-optic instrumenta-
tion has been to develop applicable technology to replace current-carrying

signal and power wires of point-sensors, temperature sensors, and presure
sensors with fiber-optic systems.

1.2 SUMMARY OF STUDY AND RECOMMENDEDSENSOR CONCEPTS

In the Concept Study, general sensor concepts initially were examined

to classify types of sensors which would be applicable to the cryogenic

regime. Subsequently, specific sensor concepts were studied in detail,

in some cases with special laboratory measurements made to facilitate

choosing of the best concepts. Library and literature surveys were

conducted, and concentrated efforts to generate new and novel concepts

and/or adaptations of older ones were undertaken.

Final TRW recommendations were based on a scoring procedure devised

to reflect the contractual objective of "developing the technology to

replace current-carrying signal and power wires of point sensors, tempera-

ture, and pressure sensors with fiber optics." Simplicity and reliability

were particularly emphasized in this evaluation because sensor operation

will occur within the stringent, cryogenic temperature range. Sensor

concepts recommended by TRW were the following:

• Liquid-Level Point Sensor

• Temperature Sensor

e Pressure Sensor

Bare-fiber concept used as "ON-OFF"
level indication.

Semiconductor bandedge absorption
shift used with instrumentation

concept of matching bandedge loca-
tion with a temperature-cycled
reference.

Movement of a pressure-sensitive
deflecting membrane sensed via an
optical readout device.

I-2



Criteria used in evaluating the sensor concepts considered and details

of rankings assigned to the various sensors considered are identified in

Section 2, selected sensors are described in Section 3, and test results for

the completed sensor system are given in Section 4. Principles of fiber-

optic systems are summarized in a previous report (Ref. l).

1.3 OBJECTIVES

Objectives of this investigation were directed towards achieving

the following critical goals:

e. Assessment and determination of technology requirements for

developing a demonstration model to evaluate feasibility of

practical cryogenic liquid-level, pressure, and temperature
sensors.

Construction of a demonstration model to measure characteristics

of the selected sensor and to develop test procedures.

Development of an appropriate electronic subsystem to operate
the sensors.

These goals were achieved by review of prevailing concepts, matching

requirements with available concepts to develop evaluation criteria, and

design, development, and test of selected concepts, with modification of

basic approaches where necessary.

Because the main consideration during this effort was to design

practical gauging systems suitable for use in actual systems, the complete

experimental system is housed in a suitable cabinet. The electronic

display panel consists of pressure and temperature readouts, indicating

lights for the liquid-leve_ sensors, and calibration controls. The liquid

nitrogen Dewar is installed on the side of the cabinet.

1.4 CONCLUSIONS

Completed study efforts have led to the following conclusions:

• Available fiber-optic sensor technology pertains to sensing of

high-refractive-index liquids at or near room temperature.

• Concepts developed in this program indicate definite feasibility

of applying fiber-optic instrumentation to practical usage.

• Development of Lhe demonstration model has identified several

areas of beneficial modifications to the present practical designs.

I-3



• Because the sensing systems based upon measuring the amplitude of
the return signals are prone to drift, the systems that depend
upon measurement of "time" as the readout, such as the present
temperature-gauge concept, are more appropriate.

• The present liquid-level and pressure sensors exhibit large
insertion loss, thereby imposing necd for rather complex
electronics.

Subsequent study of this project has revealed several possible improvements

capable of further enhancement of fiber-optic instrumentation feasibility.

1.5 RECOMMENDATIONS

The demonstration model reflects careful consideration of evaluated

concepts, and associated electronics have been built using low-noise and

noise-discrimination techniques. However, the additional improvements

discussed in Sections 1.4.1 through 1.4.3 are also recommended:

1.5.i Liquid-Level Sensor

Although much more efficient than previous ones, the newly designed

sensors can be further modified by incorporation of improved mounting methods

also developed by TRW (Ref. 2).

1.5.2 Pressure Gaug_e_

The housing and the diaphram design should be modified to minimize

the effect of temperature shock. Also, the design can be modified to

incorporate a reference system to cancel drift effects. The reference

is identical to the measuring system except that it measures the displace-

ment of the diaphram near its circumference where pressure-induced

diaphragm displacement is minimal. This would be a differential system

in which the extraneous drifts are cancelled.

Future modification may incorporate a technique called the "Geode"

system, or "Sign Around." These are essentially distance-measuring

systems capable of measuring displacements as small as one micron. Because

these are based on time-of-flight measurements, they are accurate and are

devoid of extraneous drifts.
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1.5.3 T_@_emperatureSensor

The basic design of the temperature gauge is based upon the intrinsic

transmissive properties of commonly available crystals. The readout of

the present system measures the time taken by the power pulse to elevate

the ia_er-diode temperature when the emission wavelength of the laser diode

matches that of the sensing crystal. However, a better technique would be

20 measure the temperature of the junction of the emitting laser diode

at the instant when wavelength matching takes place. The technique used

for measuring instantaneous junction temperature of the laser diode is

based upon the dependence of band-gap voltage of the forward-biased laser

diode at a specific current, say 10 mA, or of one certainly less than the

thresheld curre_it of the laser diode (Refs. I-5).
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2. SENSOR SELECTION

Many sensor concepts were considered briefly, but almost immediately

rejected because they were judged to be inappropriate for use in the

cryogenic tank environment. An example is the concept of sensing liquid

level via a float that is somehow connected to an optical readout system.

Although it should be possible to devise a float system suitable for deal-

ing with this problem, the mechanical complications appear to make this

concept impractical and not worthy of serious consideration.

Because an exhaustive list of such "automatically" rejected concepts

would not add to the clarity of this report, no such summary has been

developed because the rejected concepts were not considered in any depth.

Rather, the practical sensor concepts that were evolved from the early

part of the Concept Study were evaluated in detail, as discussed in

Sections 2.1 through 2.4.

2.1 SPECIFIC CONCEPTS CONSIDERED

2.1.1 Liquid-Level Sensor

Table 2-i identifies the liquid-level sensor concepts considered,

together with brief descriptions, the total evaluation score, and some

pertinent comments. Table 2-2 lists details of the individual evaluations

of each concept. The bare-fiber concept is clearly the performer choice,

achieving the only perfect score of all the sensors. The main virtues

of the bare-fiber level sensor are its extreme simplicity and its

nondependence on absolute light levels due to the fact that the detector

signal will either be on (when the fiber is not immersed) or off (when

the fiber is immersed). Figure 2-I is a sketch of the principle of the

bare-fiber level sensor. The wetting response time is less than the

time required to cover the fiber. The unwetting response time is slightly

longer because of film effects, but laboratory tests on a model of this

sensor have shown this effect to be minimal.
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Table 2-1. Liquid-Level Sensor Concepts Considered

Concep_ Description Evaluation Score* Remarks

BAR E F IBE R 180 Extremely simple; residual

(Light refracted from fiber when in film no problem

in contact with liquid)

PRISM

(Light ray reflected back to
return fiber until liquid reaches
prism and refracts beam into
tank)

NOTCHED CLADDING

(Part of light =efracted from
notch when liquid is at notch
level)

155 Good concept; residual film
wetting would be a problem

Dirt and residual droplets
cause erratic behavior,
causing elimination from
further" consideration

*Maximum Score Possible = 180
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Table 2-2. Evaluations of Point Level-Sensor Concepts

Requirement/Goal

Evaluation of Point Level
Sensors

Scoring
Basis

Bare Notched

Fiber Prism Cladding

MArJDATORY REQUI REMENTS

Electrically Passive at Sensor

Operates at Cryogenic Temperaturas

Can Perform Present Sensor Functions

Can Operate Immersed or Nonimmersed

Mechanically Simple and Rugged

PERFORMANCE REQUIREMENTS

Operating Range OK?

Sensitivity/Resolution OK?

Response Time OK?

InseNsitive To

Connector Reconnects?

Source Intensity Variations?

AT for Press Sensor?

z_Pfor Temp Sensor?

Stability (over 200 cycles)?

Remote Indication (100 ft) OK?

ADDITIONAL CONSIDERATIONS

Cost

Weight

Size

Power Consumption

Simple Data Processing and Readout

I nterchangeability

TOTAL SCORE*

O, 10 10 10 10
(Yes, No)

0-10 10 10 10

(Judgment)

O, 10 10 10 10

O, 10 10 5? 0"*

0-10 10 5

0-10 10 10

0-10 10 5

0-10 10 5

0-10 10 10

0-10 10 10

0-10 --

O-10 --

0-10 10 10

0-10 10 10

0-10 10 5

0-10 10 10

0-10 10 10

0-10 10 10

0-10 10 1C

0-10 10 10

180 155 0

*Maximum Score Possible = 180
* _Automatic Elimination.
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CONCEPT :

REMARKS:

With fiber cladding totally removed, external liquid "shorts

out" transmitted light, thus indicating presence of liquid

at fiber level.

Concept is point sensor, (i.e., On-Off indicator).

Extremely simple sensor and readout.

INCOMING
UGHT BEAM

'"°'" ""% r--.... /t_;_'ts_
LIGHT BEAM REMC)VED)

Figure 2-i. Recommended Liquid-Level Point Sensor Concept



2.1.2 Temperature Sensor

Table 2-3 shows the temperature-sensor concepts considered and

Table 2-4 the details of the individual evaluations. The semiconductor

absorption bandedge-shift concept is the most attractive sensor concept

primarily because of its simplicity, which results from the fact that

the sensor is a small chip inserted between the input and output fibers.

Figure 2-2 illustrates the principles of the recommended temperature-

sensor concept, and Figure 2-3 shows the temperature dependence of the

absorptior_ bandedge location for GaAs, given here as an example of the

principle utilized.

Possible instrumentation concepts to implement the absorption band-

edge concept for temperature measurement are shown in Figures 2-4(a)

through 2-4(c), which correspond to the concepts listed under the semi-

conductor bandedge shifts addressed in Tables 2-3 and 2-4. All three

instrument concepts were considered in detail, with the concept illustrated

in Figure 2-4(a) the one chosen for the final instrumentation package.

2.1.3 Pressure Sensor

Pressure-sensor concepts considered are noted in Table 2-5 and

details of the evaluations in Table 2-6. Because of their basic mechanical

simplicity the concepts utilizing optical indication of the position of

a pressure-sensitive diaphragm or bellows are preferred. Although, as

indicated in Table 2-6, the digital encoder instrumentation concept was

favored originally, a simpler system which senses the variations in light

reflected from a pressure-deformable bundle ultimately was implemented.

Variations in the output of the source light are sensed and normalized

in accordance with obtained readings.

2-5
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Table 2-3. Temperature-Sensor Concepts Considered

Evaluation

Concept Description Score r Remarks

SEMICONDUCTOR BAND-EDGE SHIFT:

Wavelength of Absorption Cut-Off is
Temperature Dependent

Match with Cut-Off of Reference
Device;

Spectral Analysis of Output;

Ratio of Outputs From 2 Led's.

PHOSPHORESCENCE:

Time Decay of Light Pulse.

VIBRONIC ABSORPTION:

Ratio of Absorption In 2 Sidebands
(Phonon Creation/Destruction).

TWO-COLOR I NTE R FERENCE COUPLER:

Spacing Varies With Expansion;
Ratio of 2-Color Signals
Temperature Dependent.

FABRY-PE ROT:

Spectral Analysis of Transmitted
Intensity.

THERMOSTAT BIMETAL:

Optical Readout of Motion

176

172

172

145

144

138

136

110

Mechanically Simple;

Simple But Higher Cost;

Requires 2 Sources.

Inefficient.2; Phosphores-
cence Into 2_rSter.

Little Known Interaction;
Good Potential, Requires
More Research.

Difficult To Match Fiber

N.A., Surface Finish, etc.

Requires High Spectral
Resolution, Therefore
High Cost.

Expansion Coefficient
Low at Cryogenic
Temperatures; Many
Fibers In Liquid.

"Maximum Score Possible = 190

Z-6



o.

C

0

r-

"0

o 8

LU

_3

k-

U.

.
__8

.__ o

o_,

°_
n'O

C

000 _00_0_

0 0 00_ _0 O0 000 _0_00_

A

o _S_ ooo oooooo ooooooo

_. _ _, o

o.-_ _._i_ o ._ _o



CONCEPT:

REMARKS:

EXAMPLE:

Light absorbed by semiconductors or insulators dependent on
intrinsic or impurity absorption; absorption bandedge a sharp
cut-off and temperature-dependent.

Simple, small-size sensor; various instrument concepts available
for indication.

Transmission and absorption of emission spectrum of HP HEMT-6000

LED at 25°C shown with selenium crystal, also at 25°C.

1.0

ABSORPTION BAND-EDGE OF SELENIUM
CRYSTAL AT VARIOUS TEMPERATURES

r

@243 OK @278 °K @300 °K

>-
k--
a

Z
t_

U.i

>

_J

0.5
rHS SHORTER THAN

BAND-EDGE ARE ABSORBED

t
WAVELENGTHS LONGER THAN

BAND-EDGE ARE TRANSMITTED

0

66O

I I I

68O 70O 720 74O

;k WAVELENGTH (nm)

Figure 2-2. Recommended Temperature-Sensor Concept
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Table 2-5. Pressure-Sensor Concepts Considered

Concept Description

Evaluation

Score* Remarks

MOTION OF DIAPHRAGM
OR BELLOWS

Optical Indication of Position

Digital Encoder

Fiber Ribbon

Variable Size Holes

Linear Taper Absorber

Linear Density Filter

Moire Grid

Fiber Bundle and Diaphragm

PRESSURE ACTIVATED
SPECTROMETER

Location of Dispersed Beam
Varies with Pressure

PHOTOE LASTIC METHOD

Variable Transmission Through
Stressed Birefringent Crystals

166

164

162

157

156

151

147

134

93

All Motion Devices Simple and Rugged

No Ratioing Needed; Sensitive

R_3uires Many Fibers

Requires Intensity Ratioing

Requires Intensity Ratioing

Requires Intensity Ratioing

Zero Point Uncertain

Requires Ratioing, Initial Calibration

Spectral Variation of Fiber Ribbon
Indicator; Temperature Sensitive

Mechanically Complex; Temperature
Sensitive

*Maximum Score Possible = 180
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2.2 OVERVIEW OF STUDY RESULTS

After an initial period wherein essentially all types of sensor

concepts were considered, the range of concepts was narrowed to those

identified in Figure 2-5. Final recommendations were based on the

numerical scoring procedure indicated in Table 2-7, the evaluations being

weighted strongly in favor of practical systems which operate in a cry-

ogenic environment. The selected concepts have been incorporated in the

demonstration model to permit further evaluation.

2.3 CONCEPTS SELECTED

This section identifies sensors selected for final development from

the various sensor concepts previously considered in Section 2.1. Specific

test data that have been accumulated on the developed s_nsors are summarized

in Section 4.

2.3.1 Liquid-Level Sensor

The selected fluid-level sensor concept is based upon measuring

optical attenuation through a glass rod used as the level sensor, as shown

in Figure 2-6. Attenuation through the sensor is a function of the

refractive index of the material surrou_ding the gla_s rod. Because

liquids g_nerally have higher refractive index, atts,tuation through the

sensor increases when the sensor is submerged in the liquid. This con-

cept in its simplest form works very well for liquids having high refrac-

tive indices, such as water, gasoline, oil, etc. However, liquid-level

sensors for low refractive indices such as those of LN2 or LH2 must be

designed with several concepts given consideration. The anatomy of the

present sensor design is elaborated below.

Figure 2-7 is a schematic of a system in which light is coupled from

an input fiber to an output fiber through a straight unclad couplinq rod. In

the following discussion it is assumed that the index of refraction of

the fiber-optic core is the same as that of the rod, that there are

no reflection losses, and that n3 < n2. The latter is true for all fibers

and fuels of interest to this program.
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Table 2-7. Sensor Scoring Evaluation

Requirement/Goal Scoring Basis*

MANDATORY REQUI REMENTS

Electrically Passiveat Sensor

Operates at Cryogenic Temperatures

Can Perform Present Sensor Functions

Can Operate Immersed or Non-Immersed

Mechanically Simple and Rugged

PERFORMANCE REQUI REMENTS

Operating Range O.K.?

Sensitivity/Resolution O.K.?

Response Time O.K.?

Insensitive To

Connector Reconnects?

Source Intensity Vp.riations?

AT For Press Sensor?

Ap For Temp Sensor?

Stability (Over 200 Cycles)?

Remote Indication (100 Ft) O.K.?

ADDITIONAL CONSIDERATIONS

Cost

Weight

Size

Power Consumption

Simple Data Processing and Readout

Interchangeability

O, 10 (Yes, No)

O-10 (Judgement)

O, 10

0,10

O-10

O-10

O-10

0-10

0-10

0-10

O-10

O-10

0-10

0-10

0-10

O-10

0-10

O-10

0-10

0-10

*Maximum Score Possible = 200
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RETURN
LIGHTBEAM

INCOMING
LIGHT BEAM

BAREF!BER
(CLADDING REMOVED)

CLAD
FIBER

Figure 2-6. Selected Fluid-Level Sensor Concept

The light entering the rod will have a numerical aperture given by

2 I/2
sineI = (n_ • n2)

where eI is the angle between the extreme ray propagated by the fiber and

the fiber axis (Ref. I). Since rl3, the refractive index of the medium sur-

rounding the rod, is less than n2 for all cryogenic fuels, the numerical

aperture of the rod, or

2 I/2sine 2 : (n n3) > sine I

is greater than that of the Fiber. Therefore if the rod is aligned to the

fiber it will transmit a11 of the incoming light without loss whether or

not it is surrounded by the liquid. If the diameters of the fibers and
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Figure 2-7. Schematic of Light Coupling Between

Input and Output Fibers
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the rod are -ot matched there will be coupling losses associated with the

system, but these losses will be independent of the medium surrounding the

sensor rod. Consequently, a straight in-line sensor as shown in Figure 2-7

cannot be used as a liquid-level gauge.

It also would be possible to introduce a scattering center within

the rod to induce higher-order modes, whereby the fraction of input light

that is transmitted by the rod would be a function of the index of refrac-

tion of the medium because the higher-order modes created by the scattering

center would be cast through the walls of the rod. However, when n3 < n2,

as is always the case here, the final solution of the amount of light

transmitted to the receiver would be governed by the numerical aperture

of the output fiber (which is smaller than that of the rod), and the signal

received would again be independent of the medium surrounding the sensor

rod. Therefore this scheme also cannot be used to detect the presence or

the level of a fluid.

A multiplicity of scattering centers of course would serve to couple

energy between modes, so that the amount of light accepted and transmitted

by the output fiber would be a function of the index of refraction of the

medium surrounding the rod. However, in practice it is difficult to

fabricate rods with the proper number and distribution of scattering

centers, and TRW experience indicates that commercial glass, poor as it is,

does not have a sufficient number.

It thus is necessary to produce in a controlled manner effective means

of inducing higher-order modes as well as of coupling energy between

modes. The simplest technique for accomplishing this is to form a number

of bends in the rod, each bend serving to mix incoming modes, to outcouple

high-order modes, and to induce new modes. The amount of light exiting

from the rod within the numerical aperture of the return fiber then will

be a function of the index of refraction of the medium surrounding the rod.

The optimum number of bends and the radii of curvature of the bends

must be determined experimentally. The closer the index of refraction of

the liquid is to that of air, the greater are the number of bends
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required to accentuate the difference between air and the liquid. TRW

has found through a number of experiments on a variety of level-sensor

configurations that the configuration shown in Figure 2-6 is optimal for

the present system.

Insertion loss of this sensor in air is 18 db. When immersed in

liquid nltrogen the signal loss is 28 dB, yielding a lO-dB change in the "

signal in going from no-fluid to fluid environment. The signal loss in

liquid hydrogen is estimated to be 22 dB, or a 4-dB change in signal due

to the presence of the fluid. Such change magnitudes are readily detected

and indicated by the recommended system. Figure 2-8 is a schematic of the

entire level-sensing system.

2.3.2 Pressure Sensor

Figure 2-9 is a sketch of the recommended pressure-sensor configura-

tion. The fiber-optic cable has been bifurcated so that some (about one-

half) of the fibers are used for input and the remainder for output.

Light is coupled from the _put fibers to the output fibers by reflection

off the thin-end plate diaphragm. The curvature of this diaphragm is

determined by the pressure external to the sensor (i.e., flat at atmospheric

pressure and concave inward at higher pressures). This change in shape of

the reflecting surface with pressure changes the coupling between input

and output fibers, thus producing a signal change as a function of pres-

sure. Locations of the fiber end faces relative to the diaphragm are set

and locked during assembly and test. The entire sensor is made of Invar

to minimize thermal effects. Figure 2-10 is a schematic of the electronic

circuitry associated with this sensor.

2.3.3 Temperature Sensor

This sensor is the most sophisticated of the three in that its

operation is based upon the fact that the position of the optical absorp-

tion (or transmission) edge of the semiconductor crystal is a well-

defined function of temperature. A schematic of this phenomenon is shown

in Figure 2-11, wherein T is the temperature of the LED and t is the
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length of time after the sensor crystal has turned on and begins to heat

up due to the electrical energy dissipated within it. Thus, if an

appropriate crystal is immersed in the fluid of interest and the wavelength

of the absorption edge determined, Lhe temperature of the crystal (and

hence of the fluid) is known.

A number of techniques for locating the position of the absorption

edge use an optical source to sweep through the wavelengths of interest.

TRW chose to measure the optical transmission of the sensor crystal using

a narrow-band tunable optical source. The wavelength at which there is a

rapid change in the transmission is the cutoff wavelength which is directly

analogous to the crystal temperature.

Gallium arsenide (GaAs) laser diodes satisfy applicable requirements,

and they may be operated at room temperature. Because room-temperature

GaAs lasers emit around 0.87 microns (exact wavelength depends upon doping)

the sensor crystal must have an absorption edge near that wavelength when

it is at cryogenic temperature. Indium phosphide (InP) is such a crystal,

as is evident from comparing the GaAs data with the InP data of

Figure 2-12. It should be noted that at 300°K the output of a GaAs laser

is at a wavelength slightly shorter than the bandedge wavelength of InP at

cryogenic temperatures, which makes it possible to tune the GaAs output

through the InP absorption edge by heating the laser. Heating is highly

preferred over cooling because heating can be accomplished by the laser

drive current itself.

The simplest tunable optical approach is to use a pulsed laser diode

driven in such a manner that during its ON pulse it heats up, causing its

output wavelength to increase. Figure 2-13, which shows this process

schematically, is a sketch of the complete temperature-sensing system and

of associated input and output signals.
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3. EXPERIMENTAL MODEL

An experimental model was built to demonstrate and evaluate the

performance of all three sensors. As shown in Figure 3-I, the model con-

sists of a console cabinet with a cryogenic Dewar affixed to its side. The

necessary electronics is behind the pdnels mounted in the sloped cut-out.

The Dewar can be detached and operated as far away from the cabinet as

30 feet. The only connection between cabinet and Dewar is via fiber

cables. The experimental model is self-contained, however, and therefore

helium gas and liquid nitrogen must be applied during test. The electronics,

self-contained with internal power supplies, can be operated by a 120V line.

The total power required is less than 120 watts. Various test jacks located

on the rear panel of the electronics module are connected to a standard

oscilloscope to monitor applicable signals. To operate the demonstration

model the following items are required:

• Helium gas cylinder with two pressure control valves

• Liquid nitrogen cylinder with stop valve

• Standard triggered oscilloscope

3.1 PERFORMANCE REQUIREMENTS

Sensor performance requirements were dictated principally by the test

procedures specified in a previously issued TRW document identifying test

plans and procedures for fiber-optic instrumentation (Ref. 3).

In accordance with Section 2.1 of the above document, the three

sensors are mounted on a sensor chamber attached to a 2-ft section of

galvanized tubing (sting assembly) as shown in Figure 3-2. This tube can

be lowered into and out of the Dewar to allow three sensors to be inserted

into a quiescent bath of LN2contained in the cryogenic Dewar. The Dewar is

designed to withstand pressures of 40 psig, which is higher than the required

test pressure of 15 psig. For safety purposes, a 15-psig limit valve has

been incorporated.
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Sensor performance goals versus achieved performance of the experi-

mental model are noted in following Sections 3.1.1 through 3.1.11.

3.1.1 Environment

The cryogenic Dewar of the experimental model allows testing of the

sensors at 77°K.

3.1.2 Operation Mode

The sensor chamber and the sting assembly can be lowered or raised five

inches. This provides sufficient height variation to cover and uncover the

sensors during dry-to-wet or wet-to dry operation.

3.1.3 Level Accurac X

As discussed under level-sensor design methodolog@, the decision height-

of-level indication is less than the diameter of the glass rod used to con-

struct the liquid sensor. In the experimental model the sensors are of l-mm

diameter rod. Therefore the level accuracy is l mm or less. The diameter of

the smallest tank that can provide O.l percent level accuracy by volume would

be lO cm provided the tank is cylindrical.

3.1.4 Temperature Ranqe

The experimental model operates at 77°K. Its design permits operation

down to 20°K, although no tests have been performed to evaluate operation

below 77°K.

3.1.5 Pressure Ranq.e

Although the Dewar is designed for 350 psig, no tests have been per-

formed with pressures higher than 45 psig.

3.1.6 Time Response

Level Sensor: "On" time is limited only by the time constants of

the receive electronics, whereas "Off" time is dependent upon the

time needed for the sensors to dry off. Care has been exercised

in designing the shape of the sensor to preclude clinging of
liquid. Assessment of success in meeting this requirement was

accomplished by monitoring the output signal of the sensor on the

scope while the Dewar was being jolted. Best estimate is the
response time was approximately 150 msec "On" time and 300 msec
"Off" time.
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0 Pressure Gage: The limiting factors for the pressure gage time
response are the mechanical time constants of the diaphragm. With

appropriate analysis it can be shown that the time response is
less than lO0 msec.

0 Temperature Gage: In the present setup, the light source is a
pulsed laser diode that is pulsed once every 750 msec (i.e.,

one reading every 750 msec). The response of the temperature gauge

gauge therefore is 750 msec. This performance can be improved
by selecting different laser diodes that would operate at pulsing

frequency of greater than lO Hz.

3.1.7 Sensor Installation Accuracy

All sensors are designed to be affixed by cyogenic epoxy onto the

reference platform. A simple jig can be used to assure installation within

an accuracy of O.l inch.

3.1.8 Sensor Location

The only factor limiting the distance between the location of the

sensor and the electronics is the lineal attenuation of the fiber. The

fiber bundle being used presently is Galite 2000, which has an attenuation

of 650 dB/km. The worst-case power m_rgin of only 15 dB of the level

sensors i_cludes the loss of 60 feet of fiber. Extra length of fiber will

increase the system loss by 3 dB, which would leave 12 dB as an adequate

power margion.

In the experimental model, one of the level sensors is fitted with

30 meters of fiber each way, which clearly demonstrates the capability of

sensors operating at a distance of lO0 feet.

3.1.9 Flow Location

This performance goal relates to mechanical strength of the various

sensors. Mountings of the sensors are sufficiently sturdy to withstand

27 fps liquid flow, Sensors are further projected by a baffle that is

installed around the sensors.

3-5
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3.1.10 Sensor Lifetime

o Sensor lifetime is principally dependent upon the following

moving mechanical parts:

- Bellows on the sting.

- Rack and pinion installed on the sting to raise and lower the
sensors in the Dewar.

- Crank handle mounted on the Dewar.

- Rubber gasket between the Dewar and the cover.

o

- Tube joints connecting LN2 and helium to the Dewar.

The steel bellows can fail due to any puncture in it. Therefore,

unless it is punctured accidentially, it can last for 200 cycles and

fatigue failure can be precluded for 200 cycles.

o Rack and pinion can be damaged if the sting is moved forcibly

while frozen due to frozen-water moisture in the sting guides.

Correct procedure would be application of heat with a small heat

gun until the sting frees itself. If accidentially damaged before

200 cycles, the rack and pinion can be repaired using very

ordinary mechanical components.

o Crank handle is sufficiently sturdy to last for 200 cycles.

Rubber gasket should be replaced as necessary.

o Tube joints should be replaced as necessary.

3.1.11 Lifetime of Electronics

Electronic components lifetime is estimated to be at least one year

of continuous use. Degradation of LEDs and of the laser diode within one

year have been considered in the design, and appropriate margins have

been incorporated. However, periodic failures have not been precluded,

and replacement parts are easily available.

3.2 TEST PROCEDURES

Setup and measuring procedures are complicated only by the _wo

requirements that the Dewar must be free of moisture and that the pressure

gauge must be calibrated differently at different temperatures. It must

be noted that presence of moisture in the Dewar interferes with

operation of the liquid-level sensor because of moisture condensation.



3.2.1 Initial Setup

The demonstration model is broken down for shipment into two major

elements consisting of the console and the sting assembly. For reassembly,

the Dewar should first be mounted on the side of the cabinet, using the

brackets and hardware that are providel. Proper care must be exercised

in handling of the Dewar because the fiber cables emerging from the

Dewar and from the sensor assembly within the Dewar are relatively

fragile.

After the Dewar has been installed, the seven fiber cables together

with the them}ocouple lead-in can be passed through the hole on the side

of the cabinet. The surplus lengths of the cJbles can then be coiled

and stowed outside the cabinet in the manner indicated in Figure 3-3.

All fiber connections should be installed as shown. Because the fiber-

optic connectors are made of plastic and are therefore fragile, particular

care must be taken to avoid misalignment of connections and resulting

stripped threads. Proper installation of Dewar and of the fiber cables

may require as much as four to five hours.

After all fiber connections have been made the ac power cord may

be plugged into any ll7-Vac outlet and the electronics turned on by

actuating the power switch on the front panel. The two digital meters

should then light up.

The final step is to purge and to cool down the Dewar,

3.2.2 Cool-Down and Moisture-Purging Procedure

I. Inspect empty test Dewar interior for moisture droplets. Wipe
Dewar walls and floor if any visible moisture is present.

2, Insert sensor module into test Dewar. Secure cap with screws
provided.

3. Open test Dewar exhaust valve.

4. Purge test Dewar with gaseous helium via its fill tube for about
15 minutes.

5. Simultaneously purge sensor module interior with gaseous helium
via the Optical Cable Access tube Reduce qas flow to • "trickle"

after 15 minutes and continue the "trickle purge" throughout
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12.

demonstration. When testing temperature sensor withdraw purge

tube to within 3 inches of top of access tube to prevent

spurious heating signal from helium flow.

Close test Dewar exhaust valve and built up 5 psig in test
Dewar, and then shut off helium flow to fill tube.

Remove helium input line from fill tube and connect liquid

nitrogen transfer tube.

Crack nut on transfer tube at supply Dewar, re-open test Dewar
exhaust valve, and purge transfer tube by directing helium
back through the test Dewar exhaust line. (For this operation
the helium input line can be hand-held to exhaust port.) After
purging re--tighten nut on transfer tube.

Position sensor module about midway on the gear rack

positioning mechanism.

Open test Dewar exhaust valve.

Fill test Dewar 'slowly" with liquid nitrogen to desired level,

as indicated by ie.'elsensors.

Insert sensor module about 2-1/2 inches into liquid nitrogen

and allow about 6__00minutes to achieve thermal equilibrium. Top

off liquid nitrogen as required during equilibration. It will
be necessary to top off three or four times.

13. Proceed with all demonstrations. Refill as necessary.

SPECIAL NOTES ON COOL-DOWN PROCEDURE

Itern

Itern

i"

2:

Item 6:

Item 11:

If LN2 is left in Dewar ice will form inside.

GN2 is satisfactory for initial purge, but after liquid
nitrogen is in Dewar any further purging should be done

with GHe because of its lower freezing point.

Positive pressure inside Dewar keeps moisture out.

Filling takes approximately 9 minutes.
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3,2,3 Calibration Procedures

Calibration procedures consist mainly of adjusting the output levels

of the LEDs that provide optical Dower to the sensors. The criterion of

proper adjustment is to ensure particular voltage level at the output of

the receiver preamplifier, which in this case is l-V peak. The liquid-

level sensors and the pressure-gauge detection circuits then are adjusted

to operate properly with 1-V signals. Once these levels are set no

future adjustments are necessary because all the LENs incorporate an

optical feedback arrangement which keeps LED output constant. However,

readjustment will become necessary whenever the fiber optic connectors

are remated, Calibration can be accomplished using a triggered oscillo-

scope. A 3-channel oscilloscope unit would be most appropriate in order

to allow the two level sensors and the pressure sensor to be adjusted

simultaneously. The temperature gauge does not require any calibration.

The oscilloscope should be connected as shown in Figure 3-4. With the

levels of each output set at a 1-V peak with the trimpots located on the

front panel, the pressure linearity pot should be adjusted to cause the

pressure meter to read zero with zero pressure. The temperature gauge

requires no adjustment because it is dependent upon time measurements

rather than on voltage measurements.

A thermocouple is attached to the fiber-optic temperature gauge for

calibration purposes. The thermocouple leads should be connected to

a dc millivolt meter. The output of the fiber-optic temperature gauge

can also be monitored on an oscilloscope, but should be done on a

different unit because the repetitition rate of the temperature gauge

is approximately i pps whereas those of the other gauges are i kHz.

Scope connections to monitor the temperature gauge a]so are shown in

Figure 3-4. It is advisable although not necessary to leave the

oscilloscopes connected while demonstrating operation of the experimental

model.
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3.2.4 Demonstration Procedure

Liquid-level sensor operation is demonstrated by moving the sting

assembly up and down (in and out) of the stabilized LN 2. The sensing

lights should come on when the sensors are immersed in the liquid.

The pressure sensor may be demonstrated by applying pressure at the

LN2 input line. This is most effectively accomplished by replacing the

LN2 bottle with a helium gas bottle. After closing the relief valve

on the Dewar, pressure is applied by opening the valve of the helium

gas container. Readings of the fiber-optic gauge are then compared with

those of the mechanical pressure gauge at the helium bottle. Experimental

data and a lookup table are included in Section 4. Temperature-gauge

demonstration is accomplished by lowering the sting sufficiently to

immerse the temperature sensor in the liquid helium, Because the

temperature sensor is mounted approximately i inch higher than the No. 2

liquid-level gauge, the sting therefore must be lowered I inch past the

indication of that liquid-level sensor. At this point both the fiber

optic sensor and the thermocouple should read 77°K. Operation of the

temperature gauge can be demonstrated by raising the sensor assembly out

of the liquid and observing the temperature rise. The two gauges should

always agree with each other, altLot:gh any the;-mal lag between the two

can result in some difference in the readings.

3.3 ELECTRONIC SUBSYSTEM

Figure 3-5 is the block diagram of the total electronic subsystem

of the experimental model. The electronics for the two level se_sors

and for the pressure sensor are located behind the mai_l panel and the

temperature-gauge electronics are located behind the other panel.

Electronics for the two liquid-level sensors are shown in Figure 3-6(a).

The master i-kHz pulser serves as an approximately lO-percent-duty-cycle

pulser to all _our transmitting LED drive circuits (i.e., both level

sensors, pressure sensor, and spare channel). Each of the drive circuits

apply power to its corresponding LED while also responding to the

feedback circuit to keep the optical power of the LED at a constant

level. The receive circuit of the level sensors is comprised of a
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high-gain low-noise transimpedence bandpass amplifier, adc restorer

circuit, a threshold detection circuit, and the indicating LED drive

circuit. The block diagram is shown in Figure 3-6(b), and a complete

schematic is included in Section 4. Although that block diagram details

operation of the level-gauge electronics, a few specific characteristics

particularly should be noted. For example, a pulsed signal rather than

a dc signal was selected in order to minimize dc drifts in the receiver,

and a 10-percent r_ther than a 50-percent duty cycle in order to obtain

most peak power from the LED.

The pressure-gauge electronics as shown in Figure 3-6(c) obviously

is very similar to the level-gauge electronics, except that the threshold-

detection circuit has been replaced by a linear amplifier which drives

the front-panel pressure readout.

Conversely, the tenlperature-gauge electronics differs greatly from

the level-sensor electronics, as shown in Figure 3-7, in that the

transmitter is comprised of a pulse generator that produces pulses at a

repetition rate of approximately 1Hz, with a pulsewidth of 10 micro-

seconds. The pulse generator drives a 25-amp laser diode pulser which

in turn drives a RCA SG 2007 laser diode. The optical power output of

the associated laser is approximately 7 watts peak. The receive

electronics also shown in Figure 3-7 is comprised of a low-noise high-gain

wide bandwidth transimpedence preamplifier. The temperature-resolving

electronics essentially is a time-interval-measuring circuit which measures

the time between initiation of a laser power pulse and passage of the

corresponding receiver pulse through the sensor. A detailed circuit

diagram also is included in Section 4.
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4. SENSOR DEMONSTRATION MODEL DESIGN DESCRIPTION

This section summarizes design details, final data, and schematics of

the TRW experimental cryogenic sensors demonstration model. Presented

information reflects resolutions to problems recognized following other

conceptual and sensor-selection phases of this project, during which it

was found necessary to obtain various pertinent data that additionally

were required for successful design of the final sensors.

Because the prevailing approach to level sensing proved in various

ways to be inappropriate within cryogenic environments, it was found neces-

sary to introduce many modifications in order to assure satisfactory level

detection of cryogenic liquids having very refractive indices. Similarly,

the pressure gauge required appropriate redesign to properly adapt it to

its intended usage. On the other hand, the temperature gauge is essen-

tially new, and several aspects of its operation had to be validated ex-

perimentally'before its final design could be implemented.

4.1 LIQUID-LEVEL SENSOR

In the conceptual study the bare-fiber concept was selected. Although

some of the preliminary experimentation clearly showed excellent feasi-

bility (Ref. _), these experiments were conducted with a HeNe laser without

incorporating the signal-conveying fibers, fiber-optic connectors, and

practical electronics. Consequently, practical level sensors based on

the conceptual model suffered enormous loss, and the return optical

signal was too small to be processed.

Several liquid-level sensors that were fabricated yielded the loss

and sensitivity measurements itemized in Table 4-]. These data served to

identify the approach to tilefinal sensor shown in Figure 4-I. The new

sensor has a throughput loss of 22 dB, sensitivity of 8 dB in LN2,

calculated sensitivity of 2 dB in LH2, and a decision height of 0.25 mm.

Further design work also was necessary to determine the most desirable

adhesive for attaching the sensor to the sensor head. This was found to

be "Scotchcast" XR-5241 material manufactured by 3-M Company, the only

material that works satisfactorily in a cryogenic environment and that also

has a high refractive index. This epoxy has been used to mount the sensor

4-I
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to the sensor chamber while providing a cryogenic seal between the liquid

and the dry environment inside the sensor chamber. Because use of epoxy

increases the throughput loss, such loss was avoided by applying a coating

of platinum at the point where epoxy would be emplaced. Measurements of

losses of various configurations are given in Table 4-2.

In the final design a special bushing has been used together with

glass windows to minimize loss due to attachment of the sensor. The

arrangement now being used, and also a newer technique which has not been

incorporated in the present experimental model have been described in

detail in a current TRW publication (Ref, 2). A schematic diagram of

level-gauge electronics is presented in Figure 4-2.

4.2 PRESSURE GAUGE

The pressure gauge of the experimental model resembles the cowlceptual

design, and no modification was found necessary. However, the present

design manifests a thermal shock effect which results in a thermal drift,

whose effect can be minimized using proper calibration techniques. As

noted in the discussion of the conceptual phase, the pressure gauge is

based upon the known technology of measuring the distance of a reflective

diaphragm from a sensing bifurcated fiber bundle by determining the amount

of light that is reflected through the bundle. Figure 4-3 evaluates the

function of reflected light versus distance. It should be noted that this

curve displays two slopes, which represent the behavior of the reflected

light as the diaphragm moves away From the fiber. The reflected light

increases up to a certain peak and then starts to decrease. The zero-

pressure diaphragm placement is at the point indicated in Figure 4-3, and as

pressure increases the reflected light decreases.

Pressure-gauge electronics are arranged in such a manner that a

certain voltage level (l-V peak in this case) designates zero pressure.

Any output voltage less than zero then is indicated on the meter as a

pressure reading. In the experimental model the gain values of the

pressure-gauge receive electronics translate to l millivolt per pound of

pressure.

4-4
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Table 4-3 summarizes measured data up to 40 psi, within which range

the pressure gauge is fairly linear. However, care must be taken while

calibrating the pressure gauge in order to avoid effects of thermal shock.

Table 4-4 is the associated lookup table. Pressure-gauge construction de-

tails and electronic schematics are shown in Figures 4-4 through 4-7.

4.3 TEMPERATURE GAUGE

An InP crystal was selected as the sensing crystal to accommodate

the desired temperature range of 4°K to 135°K. The bandgaps of InP and of

GaAs are offset from each other roughly 300°C and the sensitivities of

crystals operating at room temperature and at cryogenic temperatures are

in the ratio of l:lO. Therefore, the temperature of the GaAs laser diode

must be swept from room temperature to 250 above room temperature to

cover the desired range of temperature measurement.

The basic premise of temperature measurement for present purposes is

to measure bandedge shift. Also, the key issue in designing the

temperature gauge is to develop simpler methods of measureF,_nt. Some of

the suggested methods incorporated use of complicated and delicate optical

components, and the effect of bandedge shift was measured in terms of

amplitude. However, measurement of amplitude always includes drifts that

cause inaccuracies in measurement. Also, resolution of the prevailing

method is poor because the slope of the bandedge curve from lO to 90

percent of the slope is 55°C wide, as shown in Figure 4-8 for a GaAs

crystal. The swept-spectrum method of measuring bandedge shift has been

developed and incorporated in the experimental model. Full description

of this technique has previously been published (Ref. 5). The light source

is an RCA SG 2007 pulse laser diode. Although several other diodes also were

considered, this wavelength and the thermal time constants of the SG 2007

diode were most suitable for this experiment. An elaborate setup including a

spectrophotometer was used to measure the emitted wavelength shift as well

as its range. Figure 4-9 presents oscillograms of this experiment, with

results showing that the output wavelength of an SG 2007 diode shifts by

130 A within lO microseconds of the applied pulse.

4-8
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Figures 4-9(a) and 4-9(b) illustrate emission wavelengths of an RCA

SC-2007 laser diode at various junction temperatures. These exposures were

obtained while the laser was being energized with 3-_sec 25-Amp pulses.

The light was monitored through a monochromator tuned at various wavelengths.

The time delay between initiation of a laser pulse and appearance of light

is the time required for the laser-diode junction to heat sufficiently to

emit wavelengths to which the monochromator is tuned. In Figure 4-9(a) the
0

laser diode at room temperature has generated five wavelengths of 9050A,
0 0 0 0

9060A, 9070A, 9080A, and 9090A. Figure 4-9(b) shows results of the same

experiment with the laser junction cooled to -30°C, producing wavelengths
0 0 0 0

from left to right of 8970A, 8980A, 8990A, and 9000A.

These data were used to design required t_mperature-gauge electronics,

for which a block diagram is shown in Figure 4-I0. The transmitted pulse

is lO microseconds long and has a repetition rate of I Hz. Temperature is

measured in terms of the time interval between initiation of the laser

pulse and pulse arrival at the sensing crystal. The temperature gauge

indicates the 77°K (LN2 temperature) reading by a time interval of

approximately 4.5 microseconds.

Obtained experimental data of temperature versus temperature-gauge

readings and the associated lookup table are given in Tables 4-5 and 4-6.

Mechanical arrangement of the temperature gauge is depicted in Figure 4-II.

Electronic schematics of the temperature gauge and of the associated 25-Amp

laser-diode pulser are given in Figures 4-12 and 4-13 respectively.
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PRINCIPLESOF FIBEROPTICSYSTEMS

Basic Instrumentation Elements

The basic elements of any fiber optic instrument system are as shorn in Figure I.

The system functions more or less as a communication link. Optical signals from a

light source are transmitted via a fiber optic cable to a remote sensor which then

"conditions" the transmitted light beam according to the measurement being made (in

our case, the temperature). The resulting, modified light output from the sensor

is returned to _e optical receiver through another fiber nptic cable, the signal

output of the receiver thus furnishing the information about the sensed conditions

through appropriate calibrations.

In the following sections, we present some detailed discussion of the principles

of optical fibers and the associated components of a fiber optic system. Some of

the material is more general in nature than required for the instrument and control

_ystems of concern here, but is included as an overview of the basic principles.

The Source: LED's or Aw:lanche Diodes

The light source (or emitter) for the system must be capable nf modulatlon at

a rate sufficiently fast to handle the information flow. It can be externally mod-

ulated by a fast light shutter or light modulator, but this is usually much more

complicated and costly than controlling the intensity directly by means fo the cur-

rent flow. Second, the wavelength of the light from the source must be within a

part of the spectrum that allows efficient transmission through the fiber. Third,

the emitter area should be such that sufficient optical power can be coupled into

the small diameter optical fiber or bundle. This last requirement rules out most

conventional light sources, such as incandescnet lamps, where the light is dispersed

over a large area. Thus the source must have high radiance and a small effective

source diamter; otherwise, most of the light will be lost.

There are two kinds of light sources compatib:e with optical fibers: light

emitting diodes (LED's) and the closely related injection laser. Both LED's and

injection lasers are solid state devices, and can be made small enough to work well

with fiber optic cables; in addition, their unit costs are typically low, of the

order of a few dollars.

A1 -I



Light Emit.tin_ Diodes

LED's for fiber optic communications are p-n diodes made from crystals of

aluminum-gallium-arsenide (AcGaAs). Forward biasing of the junction causes the

injection of electrons from the n-region where they recombine with holes, causing

photons of light to be emitted. The emitted light is incoherent (random phase)

and isotropic (nondirectional) and has a lower radiance than that from injection

lasers. LED's not specifically designed for fiber optic use, e.g., display and

sensor applications, generally have a low radiance and at best work only with

fiber bundles that offer a large cross-section (typically 0.045 inch diameter)

to capture the light.

For single fiber applications, higher radiance is needed and special devices

have been designed for the purpose. Figure 2 shows one of these, the Burrus diode,

named for its invetor at Bell Laboratories. This LED has low thermal resistance,

high current density, and provides a "well" for the optical fiber so that coupling

losses are minimized. Its useful power output is typically about one-tenth that

of an injection laser but is adequate for many fiber-optic applications.

LED's can be directly modulated at rates up to a few hundred megahertz, and

they have fairly linear power-drive characteristics, making them useful for analog

applications. At the present time they also are less expensive, more reliable,

and have a longer operating lifetime than injection lasers. Their big dlcadvantage

is their lower radiance, which means lower coupled power and more repeater stations

in long-haul fiber optic communication links.

Injection Lasers

Injection lasers are similar to LED's in that they use the same material,

A_GaAs, to form a p-n junction. The light producing mechanism is also the same;

however, in the injection laser the p-n junction is perpendicular to the two cleaved

ends of the crystal which form the reflecting mirrors of an optical cavity. Laser

action occurs when the optical gain in the recombination region exceeds cavity losses.

The emitted light is therefore coherent (in phase) and directed, and has a high

radiance. The spectral distribution is narrower than that of the LED, about 0.002 um.

A1-2



Laser action in this type of device was first achieved in 1962, about two

years after the first ruby laser. Theseearly minature semiconductor lasers were
simple p-n junctions (so-called "homojunctions" since a single material--gallium-

arsenide--was used. To trigger the laser action, extremely high current densities
were required (typically 50,DO0amperesper square centimeter), so that they could

only be operated in a pulse modeat reduced temperatures (liquid nitrogen). Even

then, their operating lifetimes were measuredin minutes.

Fortunately for fiber optics applications, significant advances have been

made, and continuous injection laser operation at room temperature is nowcommon.

The development that madethis possible is the double heterostructure (DH) in-

jection laser shownin Figure 3. In this device, the thin recombination region

is boundedby two heterojunctions, p-p and n-n, formed by changing the aluminum-
gallium ratio. These heterojunctions serve two functions. First, waveguiding of

the radiation occurs because the recombination region is bouncedby material with

a lower refractive index. Second, replacing gallium by aiuminum increases the

energy band gap outside the recombination region, causing minority carrier con-

tainment within the recombination region. Also, because the active region is

confined to a narrow strip, typically about 13 pm wide, the device provides a

high concentration of injected carriers (high optical gain). The required cur-

rent density is greatly reduced--to a few hundered amperes per square centimeter--

and the threshold current to cause laser action is typically I00 mA. By proper

choice of the aluminum-gallium ratio, the recombination band gap and therefore

the wavelength of the emitted radiation can be varied.

The Medium: Optical Fibers and Cables

The basic fiber lightguide consists of a transparent core surrounded by a

cladding material having a lower refractive index. The refractive index of quartz

is 1.46 and for common types of glass ranges up to about 1.7. When light travels

from a high index region to a low index retion at a sufficiently shallow angle

(termed the critical angle for total internal reflection), it is completely re-

flected; at a steeper angle the light rays are partially transmitted into the low

index region.
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O,OOO.,j,,I_°O.IOtllt,tOIOIQOim,'OOgI°I'O

SOURCE
CONTROL

OR
MODULATOR

LIGHT
SOURCE

I

RETURN
SIGNAL
MONITOR

SIGNAL TO CONTROL
AND MONITOR SYSTEMS

i I

OPTICAL
RECEIVER '

IIallal.al Bi amle _aa. tQoola.o,el JL ,ll..J.aam

REMOTE / NO N-HAZARDOUS
LOCATION

OPTICAL
FIBER

OPTICAL
FIBER

PROPELLANT
TANK

J,
SENSOR

!

Figure 1. Basic elements of a fiber optic instrument system
for remote measurements of propellant tank conditions.
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The simplest concept of light-guiding in an optical fiber is to visualize

the light at being totally internally reflected by the core-cladding interface.

In more detailed terms, the fiber acts as a dielectric waveguide which supports

only a limited number of propagation modes. The modes (or eigenfunctions) are

solutions to the wave equation, with boundary conditions dictated by the struc-

ture through which the energy propagates--in our case the optical fiber. There

are guided modes and unguided or radiation modes. We are most interested in the

guided modes since they are confined by the fiber and travel with minimum loss

down it.

For a fiber waveguide of finite size, there are a finite number of guided

wave modes for a given optical frequency that is a finite number of discrete

solutions to the wave equation. Each mode exhibits a unique spatial distribu-

tion of energy across the fiber. Light guided by the fiber can be decomposed

into the various permitted modes. The amount of energy in each mode depends

on the optical emitter, coupling mechanisms, and irregularities in the fiber

that can cause mode conversion. With smaller fibers, fewer modes are allowed.

The single mode fiber, as its name implies, propagates only one mode.

An important characteristic of an optical fiber is its numerical aperture

(N.A.), defined as the sine of the maximum half-angle of acceptance (0) of the

incoming light beam. Light entering the fiber at a larger angle will leak through

the core-cladding interface and be lost. Thus, the theoretical extremes for the

value of N.A. are 0 and I, corresponding to half-angles of acdeptance of 0 and

90 degrees, respectively. When maximum light acceptance (large number of pro-

pagation modes) is important, high N.A. fibers are used, and values of 0.7 or

higher are not uncommon. For fiber optic communications, lower values (typically

O.l to 0.2) are used, since a large number of propagation modes leads to problems

in modal dispersion, which produces pulse smearing in digital systems and fre-

quency roll-off in analog systems, because different modes Lravel at different

relative propagation velocities through the fiber. Figure 4 shows the relation-

ship between the half-angle of acceptance and the refractive indices of core _nd

cladding.
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FIBER OPTIC LIQUID LEVEL SEr_SOR

NEW TECHNOLOGY REPORT

11-18

PROBLEM

At least 12 patents have been applied for the bare fiber liquid level,

most of these innovations pertain to: sensing of ordinary liquids such as

water, gasoline and oil-liquids with refractive indeces much higher than

that of the air and, operable at or near room temperature. To design the

sensors for the low refractive indeces that operate at cryogenic temperature

several new techniques have been employed.

The bare fiber sensors work on the principle that the optical throughput

loss is dependent upon the material that surrounds the bare fiber. A prac-

tical sensor, therefore, is a glass rod connected to the fiber optic system

that contlnuous]y monitors the throughput loss. When the sensor is in_ersed

in the liquid, the loss increases indicating that the sensor is in contact

with the liquid. A typical system is shown in Figure I. Figure 2 shows

some of the existing sensors; multiple bends are to increase the sensitivity.

For most efficient sensors, two factors are important: the change in

the throughput loss due to the refractive index of the liquid (sensitivity)

and, the insertion loss of the sensor. Usually these are opposing factors

since the sensitivity can be increased by adding bends to the sensor which

also increase the insertion loss.
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During initial evaluation of the sensor with techniques available at that

time, it was found that to have a sensitivity of 2 dB for LH2 would require

5 bends. The insertion loss of such a sensor was found to be 45 dB. This loss

was enormous. Even using fairly expensive LED's the ouput of the sensor was

too low to be measured. CW lasers and pulsed lasers were considered. CW lasers

have not been tried. The pulsed lasers exhibited amplitude jitter and interferred

with decision making threshold electrznics.

OBJECTIVES

There are two problems to be considered: increase the sensitivity while

keeping insertion loss down to 20-25 dB. and explore different means of attach-

ing sensors to the fibers while maintaining a good pressure and liquid seal

between the sensors and the signal conveying fibers.

PROCEDURE

To design more appropriate sensors, the phenomenon that does the liquid

sensing must be examined. As often misquoted, the lineal attenuation of the

glass does not change when in_nersed in the liquid, it is the numerical aperture

which changes at the point of contact with the liquid. This can be explained

with the aid of Figure 3. When the fiber is immersed in the liquid it is

equvalent to two fibers. The one in the air has large exit numerical apertue

while the portion in the liquid has small NA, since NA depends upon the re-

fractive index of the surrounding material. The extra loss due to mismatch

of the numerical aperture is in fact the sensing mechanism. This discussion

clearly shows that the sensing is only at the surface of the liquid; no TR_VS}_TE,_3
&

L',T;

matter how long the fiber in the liquid the loss reading will be the same. ,, ; i ; i_;',_

P IE r
bEh%?l::_Eqt
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Another point worth considering is the contents of variety of optical

modes present in the sensor. The loss due to mismatch of numerical aperture

is dependent on the presence of oblique modes. An optical flux flowing

through a long fiber sheds most of its modes along the length of the fiber.

If well behaved modes a_e predominant the loss due to NA mismatch would be

too small to detect - less sensitivity.

This discussion also points out that mismatch loss occurs only when

the sensor goes from air to liquid but no sensing is done on its return trip

if the sensor is u shaped. Mounting of the sensor is yet another problem.

The configuration of this experimental system nessitates liquid and pressure

cryogenic sealbetween the sensors and the signal conveying fiber optic cable.

There are very few epoxies that are fit for this purpose. These epoxies have

yery high refractive index, any application of this results into heavy through-

put loss.

Such constraints are the reason for applying nev_ technology to the level

sensors to be used in cryogenic environments when refractive index of the

liquid not much higher than air.

PROGRESS

New liquid level sensors have been designed. Figure 4 shows the sensor

being used in the experimental set-up. The total insertion loss is 20 dB and

sensitivity is 8 dB in liquid nitrogen which means 2 dB in LH2. The basic

design approach was to achieve sensitivity with less number of bends. This

was achieved by introducing scattering centers with sharp bends. A curve

fiber has no good effect on the sensor, therefore, the legs of the sensor

_,CT I T_97_

are kept straight. As has been discussed that the sensing loss is provide_a(EN[,,
'l.,.L, zr

by a single point where the sensor touches the liquid, the final sensor de-

tects the presence of liquid at its lowest points. The--i/L-_dcr_i_;ff_)/__ght _ /6//[_)_////

Mada6 Sharma Date _. Ro_choudhuri Date R.E. Brooks Date
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11-19 2
therefore, is less than the diameter of the bare fiber which is in this

case one millimeter.

The sensor is sealed with the appropriate epoxy using a special

bushing which ensures a very fine band of point of contact with the sensor.

The bushing also ensures that the seal is very near to the end of the sensor.

Figure 5 shows a modified sensor sealing arrangement. This method is

being studied presently.

"M_adan Sharma Date _!'L
C. Roychoudhuri Date
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1.0 INTRODUCTION

The purpose of this document is to present the plan and

procedures for testing the optical sensors developed for NASA

Contract NAS9-15454. These sensors utilize fiber optic tech-

nology to provide passive sensing of liquid level, temperature,

and pressure in cryogenic liquid propellant tanks.

The end product of the program is to be an engineering

model, deliverable to NASA/JSC, with a set of working sensors

to measure the level, temperature, and pressure in liquid ni-

trogen in a stainless steel (pressurizable) Dewar. Electron-

ics components will be placed outside the LN2 tank, with measure-

ments indicated on an instrument panel. Details of the program

and sensor concepts are given in Reference I.

Because the model tests do not involve operation in hazard-

ous environments and are conducted at pressures below 15 psig

(see S_ction 2.1 below), the test plan and procedures outlined

here involve no special requirements beyond standard laboratory

research methods.

2.0 TEST PLAN

2.1 Test Requirements

The sensor performance goals are given in Table 1. Note

that many of the goals listed are design goals only, associated

with hazardous operation in LH2 and LOX and at high pressures;

these design goals are not subject to test or demonstration on

this program.

The tests to satisfy achievement of the demonstratable per-

formance goals require [nsertion of the 3-sensor set into a

quiescent bath of LN2 in a Dewar to contain no higher than 1S psig.

Taken from the contractual statement of work, as amended

February 23, 1979.
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Table i. Sensor Performance Goals

ENVIRONMENT:

OPERATION MODE:

LEVEL ACCURACY"

TEMPERATURE RANGE:

PRESSURE RANGE:

TIME RESPONSE:

SENSOR INSTALLATION
ACCURACY:

SENSOR LOCATION:

FLOW LOCATION:

LIFETIME:

Demonstrated operation in 77°K LN2 (system
to be designed for LH2 and LOX operation ).

Demonstrated operation for LN2 covering

and uncovering the sensors (dry-to-wet
and wet-to-dry operation).

Designed to obtain 0.1% by volume of the
Shuttle tanks.*

Demonstrated measurements in 77°K (LN2_
range (designed for measurements to 20UK/LH2

and survival to 150°F/launch-stand con-
ditions ).

Demonstrated measurements in 0-15 psig range

in LN2 (_esigned for measurements to
300 psig ).

Demonstrated transient response in LN2 as

follows: 50-100 msec for level sensor,

500 msec for temperature se,_sor (pressur_
sensor designed for 50-100 msec response').

Designed for -+ 0.I inch

Demonstrated capability up to i00 feet
from electronics.

Designed to withstand up to 27 fps

Demonstrated to withstand over 200 cycles.

* These design goals can be satisfied by appropriate analyses

and are not subject to test or demonstration on this program.
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2.2 Test Hardware Configuration

The test hardware configuration shall consist of the fol-

lowing elements:

• Sensors (to measure level, temperature, and pressure)

mounted on an extendable sting to insert into the LNZ

bath,

• A stainless steel, pressurizable Dewar to contain the

LN2, and the cover of which will support the sensor

mounting sting,

• Associated electronics containing power supplies, light

sources, and measuring and indicating systems,

• A console to contain all of the above.

2.3 Facilities and Test Equipment Requirements

The test facility is the LN2 Dewar, self-contained on the

engineering model console, capable of maintaining the LNZ for

a period of approximately four hours. Standard II0 V AC elec-

trical power is required to operate the instrument electronics.

2.4 Test Schedule

The tests of the engineering model shall take place in the

period of 15 March 1979 to approximately 6 April 1979.

2.S Consumable Materials

The consumable materials are approximately 120 gr of LNZ

(iS liters).

2.6 Minimum Quality Assurance and Reliability Requirements

Electronic and pressure indicating devices shall be calibrated

as per TRW equipment pool procedures.



2.7 Special Safety Precautions

Standard procedures for handling LN2 shall be applied.

Special automatic and manual pressure relief vent valves shall

be provided to limit pressure in the Dewar to 15 psig.

2.8 Minimum Test Procedure Requirements

The minimum test procedures are that the LN2 level will

have been stabilized at atmospheric pressure before insertion

of the Z-sensor set. The exhaust vent shall be set to relieve

pressure from LN2 boil-off at the 15 psig level.

2.9 Special Technical and Engineering Support Requirements

None.

3.0 TEST PROCEDURES

3.1 Scope and Description of the Tests

The tests shall be the measurements of the response of the

3-sensor set during immersion into and withdrawal from the LN2

bath. The static and transient response behavior of the instru-

ments will be measured up to 15 psig.

Z.2 Safety Precautions

The test personnel will insure that the 15 psig pressure

relief vent is in working order as the test proceeds. Further-

more, the pressure gauge shall be monitored at all times to in-

sure that the pressure does not exceed 15 psig in the Dewar;

a manual relief vent is available to override the automatic vent

if necessary to drop the pressure.

3.3 Test Preparation and Checkout Instructions

The Dewar shall be filled with LN2 to one-half to two-thirds

full, and maintained for a time period to insure a quiesent

A3-4
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liquid surface as determined by visual inspection with the in-

strument mounting system and Dewar cap removed. Before instal-

lation of the instrument mounting system in the Dewar, the elec-

tronic subsystems shall be checked to insure proper light source

operation and optical continuity through the fiber bundles and

connectors.

3.4 Test Procedure

After filling and equilibration of the LN2 Dewar as per

the Test Preparation instructions in item 3.3 above, the instru-

ment assembly shall be mounted in the Dewar with the sensors in

the "up" position, above and not immersed in the LNZ. Monitoring

of the sensor output signals shall proceed at this time to de-

termine behavior during the cool down period.

After temperature equilibration of the sensors and mounting

box assembly in the non-immersed position, as determined by

stable output signals, the sensor outputs shall be monitored

during a controlled rate of insertion into the LN2, so as to

determine immersion time response characteristics.

After insertion of the sensors in the LN2 and further tem-

perature equilibration in the immersed position, static response

characteristics shall be measured to determine the required cali-

brations. Quasi-static response of the pressure sensor shall be

obtained b), relating the sensor output to the pressure in the

Dewar as determined from the reference pressure gauge which

monitors the Dewar tank pressure. Temperature calibration shall

be obtained from the known temperature-pressure characteristics

of LN2 (77°K at 1 atm) plus a reference thermocouple attached

to the sensor holder. Static response of the level sensor is

determined by the on-off characteristics when above or immersed

in the LN2.

After static, immersed response measurements have been



obtained, the sensors shall be removed from the LN2 at a con-

trolled rate to determine the transient response character-

istics for this mode of operation.

The capability of the sensors to undergo a lifetime of 200

cycles shall be determined by cycling the sensors in and out

of the LN2 200 times with the immersion device.

5.5 Emergency Shutdown or Special Hazardous Se.curity Procedures

The manual vent relief value shall be opened if the Dewar

tank pressure exceeds 15 psig.

3.6 Requirements of Quality Assurance of Compliance with

Mandatory Procedural Instructions

None.

4.0 DESIGN OF SPECIAL TEST EQUIPMENT, FACILITY EQUIPMENT, AND
TEST INSTALLATIONS

The Dewar test tank is the only item of equipment constructed

especially for the tests described herein. This tank was designed

and fabricated by Andonian Cryogenics, Inc. of Newtonville, MA,

to operate down to liquid helium temperatures (4.2°K) and up to

300 psi (20 atm) pressure; the tank is a high pressure version

of Andonian Model number SCSM-3-1/2 with a capacity of 3.3 liters

at S0% full. Figure 1 is a sketch illustrating the Dewar con-

struction.

5.0

i.

LIST OF REFERENCES

R. Watson "Sensor Recommendations for Fiber Optic Instru-
mentation", 31262-6001-RU-00, TRW DSSG, 31 March 1978.
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ACCESS PORT

TO INNER _

RESERVOI R

OUTER LN2
RESERVOIR

VACUUM ACES.c
AND SAFETY
VALVE

INNER
CRYOGENIC
RESERVOIR

VAC UU M

1<10 -5 TORR)

COPPER
RADIATION
SHIELD

MOUNTING FLANGE
WITH O-RI NG

I.D. = 3 1/2 INCHES
O.D. = 7 1/4 INCHES

OVERALL
HEIGHT :

INNER
RESERVO I R
DEPTH =

INNER
RESERVOI R
50% CAPACITY- 3.31

OUTER
RESERVOIR
CAPACITY = 5.51

NOTE: TANK IS 300 psi
VERSION OF
ANDONIAN
CRYOGENICS
MODEL
SCSM - 3 1/2

Figure 1. Special Stainless
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The Bandgap and the Temperature _OM: W. Von der Ohe

Coefficient of the Bandgap of GaAs ,_o_ MA,LSTA. E_T.

Between 0 and 300°K. Rl 1062 61816

REFERENCE: J. Pankove, Optical Processes in Semiconductors, Prentice

Hall, Englewood Cliffs, New Jersey, 1971, p. 27:

The tempera-

ture dependence of the gap for many semiconductors has been fitted by the

following empirical relation :' 7

aT 2
E,(T) :: E,(0) T t _ (2-2)

whcre E,(0) is the value of the energy gap at 0_K and _ and fl are constants:
Table 2-3 lists these values for several semiconductors.

TaMe 2-3 I?

Values of the parameters in Eq. (2-2)

Substance Type of E m (0) • [J

Sap (cV) (x I0-')

diamond Eal 5.4125 - 1.979 - 147,7

Si E,i 1.15.57 7.021 I 108

Ge E,, 0.7412 4.56| 210

G¢ E,d 0.88')} 6.842 398

6H SiC Eat 3.024 0.3055 --311

GaA$ E.'ad 1.5216 8.871 572

InP Ea_ 1.420b 4.906 327

inAs E,., 0.426 3. 1.58 9J

Ee¢ - indirt'¢! lap Ead - dlr¢¢l gap

ivy. p. Vlrshni, Phystca M, 149 (1967).

O

The bandgap (A versus °K) and the temperature coefficient of the bandgap
0

(A/°K versus °K) of GaAs between 0 and 300°K are shown in the attached

figures.
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78.4351.8-013

9 February 197.8

sueJ_cT Swept Spectrum Temperature Gauge _Ro_ M. Sharma

"L D(_ MAlL _TA.

R1 I070

EXT.

61105

Problem

The temperature-dependent bandedge shift in the crystal is the

basis of the optical temperature gauge. Heasuring this shift is
really the key issue ;n the design of the temperature gauging.

• There are two methods that have been suggested for measuring

the shift. One depends upon measuring the transmitted light
intensity through the sensing crystal and the other measures

the spectrum of the transmitted light using gratings, mono-
chromators, prisms, etc.

• There are several problems associated with these approaches:

• Extraneous drift

Limited temperature range.

Transmitted intensity output versus temperature is not a
linear function. Some sort of nonlinear scaling factors

will be required.

o Complexity and very low-signal-level electronics required--

electronics becomes a critical technology.

Objectives

• To study and incorporate methods that will alleviate the above
problems.

Approach

The new approach draws an a_alogy from the electronics measure-

ment system where a bandpass of electronic filters can be

measured by a sweep frequency generator.

In the case o,_ the optical temperature gauge, the spectral
content of the light source is made to vary as a function of

time; this is equivalent to a sweep generator. If time were
to be measured from a reference to the time when the spectral

characteristics of the light source and the sensing crystal

match, the time interval would indicate the temperature.
A5-1
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m To emp]oy this concept for temperature gauging, the spectrum of
the light source must be varied in time; this can be done several

ways:

The spectral response of an LED is dependent upon the bandedge;
therefore upon the temperature of the LED chip. The chip tem-

perature can be varied by applying power to the LED. To do
this, known power _s applied to the LED. if tilechip is ther-

mally isolated (has no heat sink), its temperature will rise
with tinle linearly. The rate of rise will be a function of

the mass of the chip, thermal capacity, and density, and will
be controlled by the amount of power applied to it. This

approach is a simple means to chirp the spectral output of
the LED.

A similar approach can be applied to a laser diode since

lasing wavelengths are close to the bandedge. The spectral

width of laser diodes is very narrow, therefore, a high degree
of resolution can be obtained.

Similar to the swept LED and the swept laser diode, a crystal
can be made to perform the sweeping function. This would be

advantageous in the case where the bandedge of the LED
falls outside the range of measurement or other than LED

light source is more desirable.

• A sweeping monochromator in front of the light source can be
employed where high resolution is needed. This monochromator

can be sit_ple since it is close to the light source and enough
optical power is available.

Progress

• Sketches of 4 conceptual arrangements are shown.

• A dummy temperature gauge has been made for show-and-tell.

• Functional diagram is as shown.

• Pertinent characteristics of candidate crystals have been
tabulated.

MMS:bj

Attach[_ents
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Long. Energy Bamh In Senli¢omlurtors, Wiley 0968); S. Shionoya, "1 uminewcnee of |.atl..¢_ of the 7nS 1-)pc,'" LunltneJcence ,'l Organic St, hdi. ed. P. Gold-

berll, Academic Press (19(..6), p. 206; G. _lO_¢¢ke, "lattice Conttltnt,." ._e..c,,n,lut tt,r_ ,'lid 5rt,.melah, Academic Prevt 1. 7_1 (1966); and _t number of more
recent pa_rl, Where confllchn I vllu¢! npptllred, the moll recent dlltii wit use. Many pilrameterl which depend on the purity of the semiconductor Ill subject

to change a_ mil/rial leehnolollY improves.

ti)¢pcnd_l Oil polylyp¢,

lCIl_uleted vmlul.
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table 3-1 Idol-work requiremwnts for ti., liquefartlon of g_s
_ginnin_ at 70°F and i aim

Nor;?14][

boding Ideal work of

pmnt, liqucf "_wti,_

Gas * R - l_ d fn , Btu / lb qt

Helium, He' 7.60 2870

Hydrogen, Hs 36.7 5002

Neon, Ne 48.8 557.6

Nitrogen, Ns 139.2 7 ) o_ 321.0

Air 141.8 7¢¢.7 308.6

Carbon n_onoxide, CO 14C.9 _ I. _" 320.7

Fhmrine, FI 15,3.6 It $,*/ 206.6

Argon, A 157.1 I_ 1. ** 200.9

()xygcn, Os 162.4 q#, I, 264.7

Methane, CH; 201 0 it t, L 452.7

Carl_m tetr, lluoride, CF, 261.3 I _" 73.9

Ethane, CslI, 332.1 142.4

Ammonia, Nil, 431.6 100.2
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TABLE Xl,

Temperature in Degrees F

COPPER vs. COPPER-NICKEL
(Copper-Constantan)

I vt)E T

Reference Junction at 32°F

O[G • 0 Z 2 ) 6 6 7 a 9 10 O1_ ;

T_RW_ELECTMIC VUL;4_E IN AI_ULtflL MILLIV@LI$

-ITO -_.lll -_.?)2 -j,7_, -_.Tel -S*i_6 -_*/_i -_._;4 -_.e/_ -_,_ -_,_0 -%',6, -t_O

-150 -1,.10 -_.',,_ -_,'._! -_,_'"? *_._?Z -,,_._e o'._,c_ -','_i9 -,*'_* -_._0 -_.56s -I'_u

-I*o -1.k_l -_.;6# -),_s) -_.:_9 _,_l_ -)._)l ._,)_ -I._ *_.lY8 -),iv,= -I,_lo ot,.o

-I)0 -),019 -$,1_,'* -3.1_1 -_.131 -I,Is_ -_.17_ -_,ls6 -_,_ol -.%_1_ -).21_ -),,_l -l)o

-|lo ._,9/_ -,_,_19 _.e_i -_,,_1) -Z._R'_ -).OO6 *_,_) -_,319 -_.OS_ -),0!_2 -I.089 -l_O

• -lio -Z*iS_ -7.171 -2.11S -7._OS -?.82k -Z.ml8 -_.8_." --_,_Z *_,009 */.901 -#*92) -110

-100 -I*_li -/*_91 -_.61_ -?.6)3 -Z,6"_O -2*_eT *_,685 -Z*70_ -2.?1_ "Z*TI6 °_*?-"l "tOO

.... ,..... ,.,,, ............. ,................... )

_*.'T _ _ -tO -Z,2_S -Zo243 -2,26_ -;,ZTt -2,297 -_,')]_, -.',)_] -_,)_! -_,._6_ -|,)IT -1,40_ SO

-tO -I,856 -I,tl'S -1,19,, -1._12 -1,9)1 -_,95_ -1,961 -1,_7 -Z*005 -Z*OZe -_,_2 -tO

-)0 -1,,_7_ -|,_9 -[,31_ -],)_0 -1,3_8 -|,377 -1.)97 -l*_lb r]'4_6 " | "_'')_ --|,47_ ")O

-_0 -|.011 *hlO! -Z,I_I -l,t_l -l,leO -I.l_s -L,/._O -I./,'_ -I._4_ -:,_bO *_.271 -_0

-_0 -o,s;_ -o.89_ -o,9_o -o.v*o -o.9(,o -o._.o -_._oo -_*'*,_| -_.c-_ -|*_'.1 _.oel to
o -0.6_., -0._')_ -o.?|6 -0,_3(* -_,757 -o,7_ -O._S -_.s|_ -¢,|Ii .O,e_9 -_.s?9 0

o

_O -0*_& -o, ;' 1_1 -o, 2 le_ -o,1_ -_,_71 -o* 1_. -0.129 -0, 137 -O*CSE -0,064 -0,04) _0

SO l,OEO l.OS_ -- |.1, 5 |.],'s ].I_ l,l?_ l.l_e _[*/]_ |,_,,. I._eS |.2e8 _O

|_O )o?|| 3,737 3,762 ], lt_8 3,8|) 3,8.'9 ),86_ 3*t_ 3*g |;a "_, V_'| 3._67 l_0

330 ?.4_0 7._|| 7. _7 7..?_ 7.6 _ _.e)? 7._6J T. _9'_ 7.7[_ 7.7_b 7.77_ 370

_50 8*Ob_ 6.090 8,i19 0,1_8 0,1/? _, _.t_ 8,2_ 0,7#>_ U,?gZ 0,321 l*!_O )'>0

)O0 8,93) it°_6_ 8._q7 9,¢21 q, J5o 9.], . 9.l, _ 9.1_9 9,]tK 9,198 9,_? _80

4_ l|."/ ? 11,_._e ll. ,8 11,11_ lt,l_ i;.}_s II..'t/ 11,/4_ 11.;_; 11,30- _ 11,_ 4_0

• 41_0 |1,33] |1,_4 ]I.'_ ll,_;5 |l,_* iI,_,._ 1 Ti,',_ lt.',_ _ lI,S_'# II,b|O |1,640 46U
|TO ll*_O II,_>Pl li*_ I1,/'_ 11._ lt.r_', )I,_.F ll.*_, tl,_o? It,9lO I 1 ,':4_ 4?0

_o I ],8)4 i ), I166 |).8q8 |),q)_ 1 ],'.)6| |_,g)) |_,ct_ l_,C,5? |_*Cq'_ 14,|Li l_,l')_ _40

i_l_ ll,.Is_ I,t.I_6 l_,.41, l_.,-a I_.*.,, I,._, I_,._. I_.,*_ I'.'l" i_. Sl |l.;e,, t, lO
ii ,l, _ | y._li4 I_.11# I/.1_ 1_.18_ I #.,'1 ? I#.. _'_ , ll..ql I#.l|_ tv. _', iv.l_, I#.t16 _J

1170 |_._|4 IO*llg Ifl*l_l |I1.1._ l_._i_ Ill.?., ' ll.a_ _ 1_._19 lil. I _ |q. _8_ i8.4/o 670

$@o |l* #'_ ; II. I'H I_*,_?_ l_, m',n i,,. _*') ; in.,,/_ ll,q_ i_,_e_ I_.,_1 _ I,% oil le.O$9 I$o

YOQ |l.O Iq ill. t 19 Iq.16_ Ig.I 'a_ Iq. ,' IL_ lq.._ltl Iq* /'lq I_* *_' |'i* 14#_ |_*_00 | ll*_ !i, ?0@

f|O It*It4 I$*'St$ Iq*q >." i*_,_ q_ Iq._yo i_l._C4 |i.llO |'11,4 ea IL_. _e LV. r_O | II. 'lTi #ic)

'l_lQ |t.ll_ | tl. lIGI i'_ .,l,_, iq,,_? _ |q._kl Iq._. "+ Iql. _1 ?$ ;o,oi, ;o,_v ;C. 011 /O.Ill #l 0

_}_ /O.ili /0. I_0 _O.lOt a_.lll 2_.;52 ;c.. _l 1 /_. 12L 20. I_S ,_ .+Iv ;_.*1_ /O.,_i 710

?lO /O,IOl /o,llt IO.t_t ?_0

O(G ; o I I 1 • _ I _ | • I0 01G

TYPE

_t," 'L '
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